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SUMMARY

This paper introduces a ¯ux-limited scheme FLOCV for the overlapping control volume (OCV) approach to 2D
steady and unsteady convection±diffusion problems on structured non-orthogonal grids. FLOCV switches from
second- to ®rst-order interpolation in the presence of extrema. Smooth switching between the two is ensured by
weighted average second- and ®rst-order upwind differencing, with the weights being dynamically determined.
Five convective test problems are solved using this scheme and results are compared with known analytical
solutions. It is found that FLOCV approximately retains second-order accuracy of the base discretization scheme
on uniform grids and smooth non-uniform orthogonal grids. It is also found effective in removing oscillations for
problems with discontinuities on both orthogonal and non-orthogonal grids, with little degradation of accuracy.
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1. INTRODUCTION

A major dif®culty in numerically modelling ¯ow equations is in discretizing the convective term. A

good scheme should possess the following properties: accuracy, stability, boundedness and

algorithmic simplicity. These requirements are often in opposition to one another. Stability and

boundedness require that the scheme have diffusive smoothing, whereas accuracy suffers by this.

Simple upwinding, although stable and bounded, introduces `numerical diffusion'. In problems with

strong ¯ow-to-grid skewness, ®rst-order upwind schemes are unsatisfactory because of their highly

diffusive nature. Higher-order schemes (e.g. QUICK of Leonard,1 OCV of Verma and Eswaran,2 etc.)

are able to reduce the level of cross-wind diffusion signi®cantly for oblique ¯ows. However, they

produce unphysical oscillations in regions of strong gradients. Just as numerical dissipation

dominates the error in ®rst-order schemes, dispersion, which causes oscillations, may be signi®cant in

second-order ones. We discuss below schemes that have been used to reduce oscillations in the

solutions of a single-scalar convective equation, though many of these schemes have been used in

other circumstances.
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Spurious oscillations may be suppressed by adding viscosity arti®cially to the scheme3 or

smoothing the solution after each timestep. Another approach, that of non-linear limiters, aims at

preventing the generation of numerical oscillations instead of damping them after they have been

generated. The ¯ux-corrected transport (FCT) scheme of Boris and Book4 was the ®rst attempt to

develop a higher-order monotonic scheme. Zalesak5 has modi®ed and enhanced the FCT scheme.

The total-variation-diminishing (TVD) schemes introduced by Harten6 are designed to ensure that

the total variation, i.e. the sum of the magnitude of differences in the solution between adjacent grid

points, always decreases in the solution. Some other schemes in this class are the ENO (essentially

non-oscillatory) schemes of Shu and Osher,7 the slope modi®cation method of Yang8 and the TVD

scheme of Wang and Windhopf.9 Hirsch10 provides extensive reviews of TVD schemes and other

high-order schemes.

Many schemes have been developed to eliminate oscillations in practical multidimensional ¯ow

equations and are tested on the convection±diffusion equation. The bases of evaluating such schemes

are generally (a) boundedness, i.e. that the scheme eliminates spurious oscillations, (b) minimal

diffusion, i.e. that it does not spread the solution by introducing too much diffusion, (c) accuracy, i.e.

that it does not cause too great a degradation of accuracy, and (d) non-compression, i.e. that it does

not tend to square off a smooth solution.

The TVD diagrams of Sweby11 and the normalized variable formulation (NVF) methodology of

Leonard12 provide a conceptual framework for the development and analysis of high-resolution

convection±diffusion schemes. The SMART,13 SHARP14 and UMIST15 schemes are monotonic

implementations of Leonard's third-order QUICK1 scheme. These formulations switch between

QUICK and lower-order schemes depending upon the local value of the ratio of gradients used to

identify the presence of an extremum. Darwish and Moukalled16 developed a new normalized

variable and space formulation (NVSF) in which spatial parameters are introduced so as to extend the

applicability of the NVF methodology to non-uniformly discretized orthogonal domains.

However, most ¯ux limiters have been developed for schemes for uniform meshes or at most non-

uniform orthogonal meshes. They can only be used for non-orthogonal meshes if the domain is

transformed onto an orthogonal one. Recently Verma and Eswaran2 developed an overlapping control

volume (OCV) scheme to solve steady state 2D convection±diffusion problems directly (without

transformation) on non-orthogonal structured meshes. The method was shown to be second-order-

accurate and to have good convergence properties. Verma et al.17 extended this scheme to time-

dependent convection-diffusion problems.

In this study we attempt to develop a ¯ux-limiting scheme for the OCV method which can be

applied directly on non-orthogonal grids in the physical domain and which is simple to implement

and yet approximately retains the accuracy of the base scheme.

2. FORMULATION

The details of the OCV formulation are given elsewhere,2 but for the sake of completeness we give a

brief description here. The solution domain is discretized into a structured non-orthogonal grid as

shown in Figure 1(a). A typical control volume is shown by the shaded area in the ®gure and also in

Figure 1(b). It can be seen that each interior grid point has a control volume associated with it, of

which it is the central node. Hence, we can refer to these control volumes by the index of this central

node, e.g. the control volume for (i, j) is shown in Figure 1(b). It can be seen that adjacent control

volumes will overlap to some extent.
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2.1. Governing equations for a control volume

The conservation form of the two-dimensional time-dependent convection±diffusion equation for a

scalar f is

@�rf�
@t
� H � �r ~Uf� � H � �GHf� � Sf; �1�

where r is the density, ~U is the velocity vector having components u and v in directions x and y

respectively, G is the diffusion coef®cient and Sf is a source term. On integrating equation (1) over

the control volume (cv) and applying the Gauss divergence theorem, we get

@

@t

�
cv

rf dA�
�

cs

f�runx � rvny� dl �
�

cs

G
@f
@x

nx �
@f
@y

ny

� �
dl �

� �
Sf dA; �2�

where dl is an elemental length on the boundary (cs) of the control volume and nx and ny are the

direction cosines of the outward normal ~n of dl. The contour integration is counter-clockwise.

Figure 1. (a) Discretization of solution domain. (b) Control volume corresponding to shaded area in (a). (c) Mapping of control
volume in (b) onto a square
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The transient term is discretized as�
cv

r
@f
@t

dA � r
fn�1

i; j ÿ fn
i; j

Dt

 !
As; �3�

where As is the area of the control volume and n and n� 1 are time step indices. The other terms are

evaluated at n� 1 (for a fully implicit scheme) or at n (for an explicit scheme) or as a linear

combination of the two (e.g. for Crank±Nicolson17). In this paper we use only the explicit scheme for

the unsteady test cases.

The discretization of the convection and diffusion terms is given in detail by Verma and Eswaran.2

The discretizations use ®ve-point shape functions and incorporate second-order upwinding in the

convective term. As the convective term discretization is critical to the exposition of this paper, we

present it brie¯y below.

Using the midpoint rule, we approximate the convective term�
cs

f�runx � rvny� dl � P4
k�1

f�k��ru�k�Dy�k� ÿ rv�k�Dx�k��

� P4
k�1

f�k�F �k�; �4�

where the superscript (k) refers to the edges of the control volume (shown circled in Figure 1(b)). For

edge k, k� 1, 2, 3, the approximation used is (assuming constant density r)

u�k� � 0�5�uk � uk�1�; v�k� � 0�5�vk � vk�1�;
Dy�k� � �yk�1 ÿ yk�; Dx�k� � �xk�1 ÿ xk�;

where the subscript k refers to the local grid point number (shown in Figure 1(b)). For k� 4,

uk�1; vk�1, etc. are replaced by u1; v1, etc. respectively in the above equations.

The outward mass ¯ux through edge k is

F �k� � �ruDyÿ rvDx��k�: �5�
To incorporate upwinding, f�k� in (4) is approximated at the midpoint of face k by interpolation

within the upwind control volume, which is determined by the ¯ow direction across the face.

Second-order upwinding. The OCV scheme2 uses second-order upwinding for the convective term.

In this case, if F �1� is negative (i.e. ¯ow is entering the control volume across face 1), then f�1� is

approximated by interpolation within control volume �iÿ 1; j ÿ 1�. That is, the values at the grid

points constituting control volume �iÿ 1; j ÿ 1�, through which the ¯ow enters control volume �i; j�,
are used for the interpolation of f�1� at the centre of face 1. Otherwise, if F �1� is positive, the values at

the grid points of control volume �i; j� are used to interpolate f�1� at face 1.

First-order upwinding. We can get a ®rst-order estimate f�k�1 by simply equating the face value to

the value at the central node of the upwind cell. For example, if F �1� is negative, then f�1� is

approximated by fiÿ1; jÿ1, or if F �1� is positive, by the value fi; j.

Both these upwinding schemes for convective modelling are conservative. The method used for

interpolation in the second-order upwinding is based on ®nite-element-type shape functions and is

explained below.
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2.2. Interpolation

Control volume �i; j� is mapped onto a square in �x; Z�-space as shown in Figure 1(c), with node

�i; j� at (0, 0) and the other nodes at the vertices ��1;�1� respectively. The following shape

functions are used for the interpolations,

N1 � 0�25�ÿxÿ Zÿ xZ� � 0�125�x2 � Z2�;
N2 � 0�25�xÿ Zÿ xZ� � 0�125�x2 � Z2�;
N3 � 0�25�x� Z� xZ� � 0�125�x2 � Z2�;
N4 � 0�25�ÿx� Zÿ xZ� � 0�125�x2 � Z2�;
N5 � 1ÿ 0�5�x2 � Z2�:

�6�

The isoparametric formulation is used and the dependent variable f and co-ordinates x and y in the

control volume are represented as

f �P5
i�1

Nifi; �7�

x �P5
i�1

Nixi; �8�

y �P5
i�1

Niyi; �9�

where the xi and yi are the x- and y-co-ordinates of the ®ve grid points respectively. Equations (8) and

(9) form the inverse map of control volume �i; j� from �x; Z�- to �x; y�-co-ordinates.

For the purposes of (second-order) upwinding, f�k� is found by using (7) to interpolate the value at

the midpoint of face k in the transformed control volume. For example, for face 1 we compute

N1;N2; . . . ;N5 at x � 0; Z � ÿ1 and then use equation (7).

2.3. Boundary conditions

Dirichlet boundary conditions can be implemented easily. For the control volumes next to the

boundary, second-order upwinding may require one extra (®ctitious) grid point outside the physical

domain. The need for this ®ctitious point can be avoided by using ®rst-order upwinding for these cell

faces. For Neumann boundary conditions, backward or forward differencing can be used depending

upon the boundary.

2.4. Solution procedure

The solution procedure for steady state and time-dependent convection±diffusion equations are

described by Verma and Eswaran2 and Verma et al.17 respectively. Here the explicit scheme is used

for the unsteady test cases and Gauss±Seidel iterations are used for the steady state test cases.

3. FLUX LIMITER

In common with second-order schemes, OCV displays dispersion errors. Near sharp gradients the

numerical solution has unphysical overshoots and undershoots. To control these oscillations, we

propose the FLOCV (¯ux-limited overlapping control volume) scheme, which uses a ¯ux-limiting

procedure during every iteration of the Gauss±Seidel routine or at each time step of the explicit

scheme.
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The algorithm that follows was partly inspired by Leonard's12 normalized variable method. The

idea, roughly, is to use second-order upwinding as much as possible, to ensure good accuracy, and

lapse to ®rst-order upwinding only for abnormal cells, where the use of second-order upwinding

might cause unboundedness. The degree of abnormality of a cell is determined using a simple

criterion, i.e. by determining whether the scalar value at the centre node of an upwind cell is outside

the range of values of the cell corners. It was found that too violent a switching between ®rst- and

second-order upwinding led to problems in convergence, so a smooth transition between the two was

incorporated using a parameter D (see below).

As mentioned above, the scalar face value f�k� in (4) can be estimated by either the second-order

upwind estimate f�k�2 or the ®rst-order one f�k�1 . f�k�2 and f�k�1 are used in the ¯ux-limiting procedure.

The magnitude of the overshoots and undershoots in the solution can be controlled by using proper

blending of the second-order scheme (OCV) and the ®rst-order scheme. The blending is controlled by

D, a switching parameter. The implementation of FLOCV is straightforward for explicit schemes, but

for steady state problems or implicit schemes with iterative procedures we prefer to use a deferred

correction approach similar to Khosla and Rubin.18 In this approach the quantity f�k� in the middle of

the cell face is approximated as

�f�k��n�1 � �f�k� ÿ f�k�1 �n � �f�k�1 �n�1; �10�
where n and k are the interation index and face number respectively. For an explicit scheme, f�k� is

computed only once per time step and is used directly.

The interpolated value f�k� is limited by the following procedure to control oscillations.

For each control volume �i; j� we de®ne

fmin � min�fiÿ1; j;fi�1; j;fi; j�1;fi; jÿ1�; �11�
fmax � max�fiÿ1; j;fi�1; j;fi; j�1;fi; jÿ1 �12�

and the normalized values

~fc �
fi; j ÿ fmin

fmax ÿ fmin

; �13�

~f�k�2 �
f�k�2 ÿ fmin

fmax ÿ fmin

�14�

~f�k�1 �
f�k�1 ÿ fmin

fmax ÿ fmin

: �15�

For each out¯ow face (i.e. any face for which �i; j� is the upwind cell) the normalized scalar value

of the face, f�~k�, is chosen by the following algorithm:

if ~fc 4 0; then ~f�k� � ~f�k�1 ;

else if 04 ~fc 4D; then ~f�k� � Dÿ ~fc

D

 !
~f�k�1 �

~fc

D

 !
~f�k�2 ;

else if D4 ~fc 4 1ÿ D; then ~f�k� � ~f�k�2 ;

else if 1ÿ D4 ~fc 4 1; then ~f�k� �
~fc � Dÿ 1

D

 !
~f�k�1 �

1ÿ ~fc

D

 !
~f�k�2 ;

if ~fc > 1; then ~f�k� � ~f�k�1 :
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This algorithm simply chooses the face value ~f�k� to be ~f�k�1 if ~fc > 1 or fc < 0;f�k�2 if

D4 ~fc 4 1ÿ l;D, or else takes a weighted average of the ®rst- and second-order estimates. The

value of D obviously has to be less than 0�5. The unnormalized value of f�k� can be recovered from

the normalized value by

f�k� � ~f�k��fmax ÿ fmin� � fmin:

The sensitivity of FLOCV to the switching parameter D is analysed below for test cases with

discontinuities as well as smooth gradients and extrema. Smaller values of D are preferable for

smooth solutions, because this means that the scheme will rarely use ®rst-order upwinding. However,

in the presence of shock-like discontinuities, large D-values are more likely to yield bounded

solutions. Thus the value of D should be chosen optimally to trade off the opposing requirements of

accuracy and boundedness. While we cannot expect a given value of D to be universally optimum in

all situations, our experience has led us to conclude that D �0�2±0�3 would generally work well. The

details of the numerical experiments are given in the next section.

4. RESULTS

Three steady state and two time-dependent pure convection problems are solved here and the ef®cacy

of FLOCV in controlling non-physical oscillations near the regions of steep gradient is tested. In all

cases the governing equation is (1) or its steady state counterpart with G� 0. The simple explicit

temporal scheme is used to solve the time-dependent convection problems (Test problems 3 and 4).

The performance evaluation is based on the following parameters: (i) the maximum ®eld value, (ii)

the minimum ®eld value and (iii) the RMS error. The predicted maximum and minimum values show

the effectiveness of the scheme in preserving boundedness, while the RMS error is a measure of the

overall performance of the scheme. The RMS error is de®ned as

RMS �

P
Ntotal

�fNUMERICAL ÿ fEXACT�2

Ntotal

0B@
1CA

1=2

; �16�

where Ntotal denotes the total number of interior grid points.

4.1. Test problem 1

This model problem, ®rst proposed by Raithby,19 is widely used to test the cross-stream numerical

diffusion of difference schemes.

The problem is shown in Figure 2(a). The ¯ow is assumed uniform through the square domain,

making an angle such that the streamline through �0; yc� passes through the centre of the square. The

scalar ®eld at the left (in¯ow) boundary has an abrupt step change, with f=1 above yc and f � 0

below. The Peclet number is taken as in®nity (G� 0) and thus the scalar is transported by convection

only. The boundary conditions are shown on the ®gure. The value of f is ®xed so as to be 0�5 at the

point of the step change, y � yc; x � 0. The exact solution for this problem is the advection of the step

change in the ¯ow direction without any diffusion, i.e. f� 1 above the slanted line shown and f� 0

below it.

A regular 21621 grid is used to discretize the solution domain. The other input parameters are

G� 0 and the various ¯ow angles corresponding to yc� 0, 1, 2, 3, 4 and 5. The sensitivity of FLOCV

to the switching parameter D is studied and the results are presented in Tables I±IV in tabular form

for different values of D at different ¯ow angles. The RMS error along the midplane (x� 5) and the

global maximum and minimum values of f are shown in Tables I and II. It can be observed that as D
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increases, (a) the RMS errors decrease and then increase and (b) the levels of undershoots and

overshoots decrease. The initial decrease in RMS error is due to the removal of under=overshoots and

the RMS error then increases owing to the fall in accuracy as D approaches 0�5. The optimum choice

of D seems to be between 0�2 and 0�3 (this conclusion is reinforced by other results below).

A comparison of FLOCV with other schemes is also presented. The results at the midplane (x� 5)

are shown in Figures 2(b)±2(g) for different ¯ow angles. The results for the conventional upwind

scheme, OCV and FLOCV (with D� 0�3) are shown in the ®gures. As expected, the conventional

upwind scheme does not show any overshoots or undershoots, gives the exact solution when the ¯ow

is aligned with the grid lines (Yc � 5), but is highly diffusive when the ¯ow is oblique to the grid

lines. The unbounded OCV scheme shows overshoots and undershoots near the sharp gradient. It can

be seen that FLOCV removes the oscillations associated with the unbounded OCV scheme quite

effectively when D is chosen as 0�3.

The effect of grid irregularity on the solution accuracy of FLOCV is demonstrated by solving the

above problem on a distorted grid. The interior grid points are randomly perturbed from their original

Figure 2(a). Schematic diagram of Test problem 1

Table II. Sensitivity of FLOCV to switching parameter D for Test problem 1

Yc � 3 Yc � 4 Yc � 5

D Max. Min. RMS Max. Min. RMS Max. Min. RMS

0�1 1�00005 ÿ3�091610ÿ2 0�0751 1�006 ÿ2�213610ÿ2 0�0763 1�0093 ÿ9�226610ÿ3 0�0756
0�2 1�0 ÿ9�797610ÿ3 0�0731 1�0 ÿ7�405610ÿ6 0�0750 1�0 0�0 0�0753
0�3 1�0 0�0 0�0714 1�0 0�0 0�0724 1�0 0�0 0�0725
0�4 1�0 0�0 0�0793 1�0 0�0 0�0813 1�0 0�0 0�0844

Table I. Sensitivity of FLOCV to switching parameter D for Test problem 1

Yc � 0 Yc � 1 Yc � 2

D Max. Min. RMS Max. Min. RMS Max. Min. RMS

0�1 1�0 0�0 3�528610ÿ5 1�0 ÿ3�822610ÿ2 0�054 1�0 ÿ3�822610ÿ2 0�0700
0�2 1�0 0�0 5�954610ÿ5 1�0 ÿ2�276610ÿ2 0�0495 1.0 ÿ2�045610ÿ2 0�0691
0�3 1�0 0�0 6�734610ÿ5 1�0 ÿ1�484610ÿ3 0�0527 1�0 ÿ1�794610ÿ8 0�0654
0�4 1�0 0�0 5�596610ÿ5 1�0 0�0 0�0605 1�0 0�0 0�0732
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Figure 2(d). Results for Test problem 1, yc � 2

Figure 2(b). Results for Test problem 1, yc � 0

Figure 2(c). Results for Test problem 1, yc � 1
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Figure 2(g). Results for Test problem 1, yc � 5

Figure 2(e). Results for Test problem 1, yc � 3

Figure 2(f). Results for Test problem 1, yc � 4
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uniform positions by 5%, 10% and 20% of the average grid distance (i.e. each interior grid point

is shifted from the uniform grid position by Dxs and Dys in the x- and y-direction, where Dxs and Dys

are uniformly distributed random numbers lying between � (%distortion)6Dx=100 and

� (%distortion)6Dy=100 respectively. A typical grid lay-out with 20% distortion is shown in

Figure 2(h). The results are presented in Tables III and IV for two grid levels of 21621 and

41641 at a ¯ow angle corresponding to Yc � 3.

The results show that while the RMS errors do increase with increasing grid distortion, the

overshoots and undershoots are effectively contained by FLOCV with D� 0�3 (at the expense of a

slight degradation of accuracy).

4.2. Test problem 2

The computational domain is shown in Figure 3(a). The velocity components are u � y and

v � ÿx. Again the problem is a purely convective one (G� 0), so any scalar pro®le speci®ed along

OA in Figure 3(a) should be swept unchanged along the streamlines and reproduced unchanged at

OB, OC and OD (after going through a 90�, 180� and 270� turn respectively). A scalar pro®le used by

Smith and Hutton20 is speci®ed along OA:

f � 1� tanh�10�2x� 1��; y � 0;ÿ14 x4 0:

Table III. Effect of grid distortion on performance of OCV for Test problem 1 corresponding to Yc � 3

Grid 21621 Grid 41641
Distortion

(%) Max. Min. RMS Max. Min. RMS

0 1�01750 ÿ0�13531 0�07205 1�01749 ÿ0�15320 0�06440
5 1�02516 ÿ0�13125 0�07267 1�01644 ÿ0�15039 0�06516

10 1�03280 ÿ0�12669 0�07350 1�01800 ÿ0�14684 0�06585
20 1�05102 ÿ0�11633 0�07571 1�02063 ÿ0�13746 0�06702

Figure 2(h). Distorted (20%) grid
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The boundary condition is given by

f � 0;

x � ÿ1;ÿ14 y4 1;
y � ÿ1;ÿ14 x4 1;
y � 1;ÿ14 x4 1;
x � 1;ÿ14 y4 1:

8>><>>:
Two numerical solutions are obtained using 41641 and 81681 grid points respectively. The

computed pro®les after 90�, 180� and 270� rotations are shown in Figures 3(b)±3(g) for the

conventional upwind, OCV and FLOCV (D� 0�3) schemes. The results for the conventional upwind

scheme are very diffusive and the magnitude of numerical diffusion increases as the angle of rotation

increases. It can be seen in Figures 3(b)±3(d) that OCV allows small overshoots and undershoots;

however, these reduce in magnitude as the mesh is re®ned, as shown in Figures 3(e)±3(g). When

FLOCV is used, it removes the overshoots and undershoots (Figures 3(b)±3(d)) while introducing

very little numerical diffusion. The results for the re®ned mesh, shown in Figures 3(e)±3(g), are in

close agreement with the exact solution.

This test problem is also solved on distorted grids. The overshoots and undershoots are shown in

Table V to be effectively contained by FLOCV. The level of RMS error for distortion up to 5% is

approximately the same as that on a uniform grid.

Figure 3(a). Schematic diagram of Test problem 2

Table IV. Effect of grid distortion on performance of FLOCV with D� 3 for Test
problem 1 corresponding to Yc � 3

Grid 21621 Grid 41641
Distortion

(%) Max. Min. RMS Max. Min. RMS

0 1�0 0�0 0�07144 1�0 0�0 0�05958
5 1�0 0�0 0�07275 1�0 0�0 0�06023

10 1�0 0�0 0�07450 1�0 0�0 0�06260
20 1�0 0�0 0�07861 1�0 0�0 0�07005
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Figure 3(b). Results for Test problem 2 along OB (grid 41641)

Figure 3(c). Results for Test problem 2 along OC (grid 41641)

Figure 3(d). Results for Test problem 2 along OD (grid 41641)
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Figure 3(e). Results for Test problem 2 along OB (grid 81681)

Figure 3(f). Results for Test problem 2 along OC (grid 81681)

Figure 3(g). Results for Test problem 2 along OD (grid 81681)
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4.3. Test problem 3

This problem is that of an advancing front in a unidirectional ¯ow and is included to demonstrate

the capability of the proposed ¯ux limiter in removing overshoots and undershoots in unsteady

computations.

A schematic diagram of the problem is shown in Figure 4(a). A step input is speci®ed at the inlet.

The boundary conditions at the other boundaries are homogeneous Neumann conditions. The velocity

components u and v are 0�5 and 0�0 respectively. The diffusion coef®cient G is zero, i.e. the ¯ow is

purely convective. Therefore any pro®le speci®ed at the inlet is advected downstream without any

change and can be used as an exact solution at the front position at any point in time. The

computational domain is divided into 65665 uniform meshes. Two different time steps, Dt � 48 and

96 units, corresponding to Courant numbers �� uDt=Dx� of 0�12 and 0�24 respectively, are used in the

computations. The results are shown (for t� 9600) in Figures 4(b) and 4(c) for OCV and FLOCV

along with the exact solution. It can be seen that the oscillations are removed by FLOCV. The

performance of the ¯ux limiter along with the base scheme can also be judged on the basis of the

three parameters Ew, the total variation of errors or the waviness, Et, the total absolute error, and Es,

the spreading index, as de®ned below:

Ew �
Pimax

i�1

jei�1 ÿ eij; �17�

Figure 4(a). Schematic diagram of Test problem 3

Table V. Effect of grid distortion on performance of FLOCV with D� 0�3 for Test problem 2

Grid 41641 Grid 81681
Distortion

(%) Max. Min. RMS (along OD) Max. Min. RMS (along OD)

0 1�99999 0�0 0�11233 1�99999 0�0 0�03263
5 2�00048 0�0 0�11417 2�00016 0�0 0�03469

10 2�00084 0�0 0�13503 2�00031 0�0 0�04227
20 2�00162 ÿ2�3610ÿ10 0�185302 2�00056 0�0 0�09376
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where ei is the error in the solution and at grid point i (at j � jmid corresponding to the centreline

y� 0);

Et �
Pimax

i�1

Dxijeij; �18�

Es �
Pimax

i�1

Dxijxi ÿ xf jjeij; �19�

where xf is the position of the front at the given time.

The performance parameters are presented in Tables VI±VIII for the OCV and FLOCV schemes.

The ¯ux limiter considerably improves the performance of the original scheme. It smoothens the

waviness in the solution, reduces the total absolute error and decreases the numerical spreading.

Figure 4(b). Results for Test problem 3 (Dt � 48)

Figure 4(c). Results for Test problem 3 (Dt � 96)

Table VI. Test problem 3Ðtotal variation
of errors or waviness (Ew)

Dt OCV FLOCV

48 1�75 1�52
96 1�76 1�52
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4.4. Test problem 4

In this test case a square-shaped scalar ®eld is advected. A schematic diagram of the problem is

shown in Figure 5(a). The source ®eld (shaded) has a scalar value of 10 and the rest of the domain has

a scalar value of zero. The scalar ®eld was initially centred at the point (ÿ1�5, ÿ1�5) and advected by

a uniform velocity ®eld, making 45� with the co-ordinate lines, to the position (1�5, 1�5). The velocity

components u and v are of unit magnitude.

This test is very stringent, as many lines of discontinuities exist in the problem. The global RMS

error and minimum and maximum of the computed scalar ®eld for OCV and FLOCV are presented,

for two grids of 41641 and 81681 grid points, in Table IX for a Courant number of 0�20. It can be

seen that the ¯ux limiter works satisfactorily and considerably improves the results. Tamamidis and

Assanis21 have compared the performance of various schemes for this problem. These results are

shown in Table X. It is clear that the performance of FLOCV is comparable with that of MPL,22

MSOU23 and SHARP.14 The perspective plots of the scalar ®eld are shown in Figures 5(b)±5(d) for

the OCV and FLOCV results for grids of 81681. The initial scalar ®eld is shown in Figure 5(b) and

the ®nal ®elds are shown in Figures 5(c) and 5(d) for OCV and FLOCV respectively. It can be seen

that the ¯ux limiter works well and considerably improves the solution.

Table VII. Test problem 3Ðtotal absolute
error (Et)

Dt OCV FLOCV

48 281�46 252�95
96 286�64 254�24

Table VIII. Test problem 3Ðspreading index (Es)

Dt OCV FLOCV

48 8�766104 5�496104

96 9�086104 5�536104

Figure 5(a). Schematic diagram of Test problem 4
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4.5. Test problem 5

This test was used to show the ef®cacy of the convection modelling of the OCV method by Verma

and Eswaran.2 This test case computes a smooth solution and is selected to demonstrate the effect of

¯ux limiting on the order of accuracy and to show how diffusive and=or overcompressive FLOCV

might be. The computational domain and boundary conditions are the same as shown in Figure 3(a).

The velocity components are de®ned as u � y and v � ÿx. Again the problem is purely convective

�G � 0�, so any scalar pro®le speci®ed along OA in Figure 3(a) should be reproduced unchanged at

Table IX. Results for Test problem 4ÐCourant number 0�20

Grid 41641 Grid 81681

Scheme Max. Min. RMS Max. Min. RMS

OCV 23�164 ÿ7�658 1�999 41�006 ÿ26�727 4�173
FLOCV 9�992 0�0 0�755 10�0 0�0 0�5312

Table X. Results for Test problem 4Ðresults reported by Tamamidis and Assanis21

Grid 40640 Grid 80680

Scheme Max. Min. RMS Max. Min. RMS

FOU 6�257 0�0 1�445 8�526 0�0 1�289
SOU 16�356 ÿ3�58 1�268 18�880 ÿ5�575 1�329
QUICK 18�808 ÿ5�88 1�737 35�471 ÿ21�092 3�366
MPL 9�973 0�0 0�936 10�0 0�0 0�717
MSOU 10�0 0�0 0�855 10�0 0�0 0�537
SHARP 10�219 ÿ0�44 0�948 10�892 ÿ1�373 0�652

Figure 5(b). 3D perspective plot of initial scalar ®eld for Test problem 4
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Figure 5(d). 3D perspectibve plot of scalar ®eld predicted by OCV with FLOCV

Figure 5(c). 3D perspective plot of scalar ®eld predicted by OCV scheme
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Figure 6(a). RMS error versus N for Test problem 5 (along OD) on uniform grid

Figure 6(b). Computed pro®le along OD on 41641 grid

Figure 6(c). Computed pro®le along OD on 81681 grid
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OD (after going through a 270� turn). The pro®le speci®ed along OA is the smooth Gaussian

distribution f � e2jxj sin2�px�.
The computational domain is discretized using N6N uniform grids with N� 41, 51, 61, 71 and 81.

The RMS errors of the points on OD (not for the entire domain) for OCV and FLOCV with different

values of D at various grid levels are shown in Figure 6(a) on a log±log scale. If the error e is assumed

proportional to Dxm, where m is the order of the method, then the values of m are 2�7481, 2�6327,

2�2547 and 1�7788 for OCV and FLOCV with D� 0�1, 0�2 and 0�3 respectively. It can be seen that

FLOCV maintains second-order accuracy up to D� 0�2 and there is only a small deterioration for

D� 0�3.

The computed f-pro®les along OD at grid levels of 41641 and 81681 are shown in Figures 6(b)

and 6(c) respectively for different values of D. It can be observed that FLOCV is slightly compressive

Figure 6(d). Non-uniform Cartesian grid

Figure 6(e). RMS error versus N for Test problem 5 (along OD) on non-uniform grid

Table XI. Test problem 5ÐRMS error along OD on 0% distorted grids

Grid OCV FLOCV (D� 0�1) FLOCV (D� 0�2) FLOCV (D� 0�3)

41641 0�05019 0�05692 0�07760 0�11221
51651 0�02657 0�03154 0�04825 0�07899
61661 0�01585 0�01858 0�03141 0�05711
71671 0�01048 0�01190 0�02199 0�04195
81681 0�00747 0�00917 0�01626 0�03178
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(i.e. it tends to square off the solution near the peak, especially for D� 0�3 on the coarse mesh).

However, grid re®nement improves the solution considerably in Figure 6(c). On both the coarse and

®ne meshes, diffusive errors are small.

The solution of FLOCV for this smooth case was also obtained on the non-uniform orthogonal grid

shown in Figure 6(d). (Each quadrant of this grid is a Gauss±Lobbatto Chebyshev grid of size M6M,

Table XII. Test problem 5ÐRMS error along OD on 5% distorted grids

Grid OCV FLOCV (D� 0�1) FLOCV (D� 0�2) FLOCV (D� 0�3)

41641 0�05111 0�06002 0�07986 0�11509
51651 0�02669 0�03214 0�04911 0�07944
61661 0�01844 0�02101 0�03368 0�05938
71671 0�01168 0�01339 0�02400 0�04349
81681 0�00855 0�00995 0�01682 0�03288

Table XIII. Test problem 5ÐRMS error along OD on 10% distorted grids

Grid OCV FLOCV (D� 0�1) FLOCV (D� 0�2) FLOCV (D� 0�3)

41641 0�05443 0�06488 0�08592 0�11868
51651 0�02933 0�03619 0�05306 0�08163
61661 0�02275 0�02687 0�03940 0�06421
71671 0�01406 0�01656 0�02782 0�04667
81681 0�01160 0�01275 0�01996 0�03544

Table XIV. Test problem 5ÐRMS error along OD on 20% distorted grids

Grid OCV FLOCV (D� 0�1) FLOCV (D� 0�2) FLOCV (D� 0�3)

41641 0�06639 0�08012 0�10363 0�13141
51651 0�03964 0�05311 0�06749 0�09256
61661 0�03372 0�04162 0�05423 0�07391
71671 0�02059 0�02617 0�03818 0�05331
81681 0�01844 0�02267 0�02951 0�04088

Figure 6(f). Computed pro®le along OD on 20% distorted grid (41641)
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resulting in a composite N6N grid with N� 2M� 1). A typical grid lay-out with 41641 grid points

is shown in Figure 6(d). The RMS error along OD is presented in Figure 6(e) for OCV and FLOCV

(with D� 0�1, 0�2 and 0�3). Once again, if we assume error e / �1=N �m, the exponents m are 2�591,

2�270, 2�182 and 1�707 for OCV and FLOCV with D� 0�1, 0�2 and 0�3 respectively. It is perhaps

worthy of mention that the Chebyshev grid used, while smooth, is highly non-uniform; for example,

with N� 81 the ratio of the largest to the smallest grid interval is Dmax=Dmin � 25. It can be seen that

not only is OCV second-order-accurate on this non-uniform grid, but also that FLOCV retains this

order of accuracy till at least D� 0�2.

Next we take up the case of non-uniform, non-orthogonal grids. The grid is distorted from the

uniform grid by the same means employed in Test problem 1. The effect of grid distortion on the

solutions of OCV and FLOCV is shown in Table XI±XIV. The tables show the RMS errors along OD

(270� turn) from the initial Gaussian pro®le speci®ed at OA. It can be seen that FLOCV retains

second-order accuracy up to 10% grid distortion for D4 0�2. The deterioration in the order of

accuracy of FLOCV is not very much even on the highly (20%) distorted grid. The computed pro®les

along OD are also shown in Figures 6(f) and 6(g) for the 20% distorted grid.

5. CPU TIME COMPARISON AND PROGRAMMING CONSIDERATIONS

For steady state cases the steady convection±diffusion equation is solved implicitly using an approach

similar to the deferred correction approach.18 To compare the CPU time required by the OCV and

FLOCV schemes, Test problem 5 is again used here. The convergence criterion selected for this

problem is j�f�k�1�
�i; j� ÿ f�k��i; j��j < 10ÿ5, where k is an iteration index. The results are presented in Table

XV for OCV and FLOCV (with D� 0�3) on uniform Cartesian grids. It can be seen that the increase

Figure 6(g). Computed pro®le along OD on 20% distorted grid (81681)

Table XV. CPU time (in seconds) comparison
for Test problem 5 on uniform Cartesian grids

Grid OCV FLOCV (D� 0�3)

41641 52�137 57�288
51651 104�692 111�764
61661 183�088 203�998
71671 327�558 352�860
81681 525�349 597�575

BOUNDED CONVECTION SCHEME 1159

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1137±1161 (1997)



in CPU time for FLOCV is less than 15% compared with OCV. The calculations were done on a

DEC-3000 machine.

6. CONCLUSIONS

The scheme FLOCV is a ¯ux-limited version of the base scheme OCV.2 FLOCV switches from

second- to ®rst-order interpolation in the presence of extrema. First-order interpolation introduces

numerical diffusion which damps oscillations. The switching between the different interpolation

methods is controlled by a blending parameter D.

We have tested the performance of FLOCV under varied and arduous conditions. The cases

considered in this paper include steep gradients, ¯ow-to-grid skewness and circulating ¯ows on

uniform and non-orthogonal structured grids. FLOCV performs well in all the test cases considered.

The salient results of this paper are as follows.

1. For problems with discontinuities, FLOCV is quite effective in removing oscillations associated

with the unbounded OCV scheme on both orthogonal and non-orthogonal grids.

2. The effect of ¯ux limiting on the accuracy of the base scheme was studied using a smooth

Gaussian pro®le. It was demonstrated that FLOCV is second-order-accurate on uniform

Cartesian grids for D4 0�2. FLOCV was also found to retain this order of accuracy even on

highly non-uniform Cartesian grids. On mildly non-orthogonal grids (up to 10% distortion),

FLOCV is second-order-accurate with D4 0�2. The deterioration in the order of accuracy of

FLOCV is not much even on a 20% distorted grid.

3. FLOCV was also applied to unsteady test cases. It smoothens waviness in the solution and

decreases numerical spreading as compared with the OCV scheme.

4. The performance of FLOCV was judged with other standard ¯ux-limiting schemes in a

stringent test problem (Test problem 4). FLOCV was comparable to the best of the other

schemes.

5. The sensitivity of FLOCV to the switching parameter D was analysed. The optimum choice of

D seems to be between 0�2 and 0�3.

6. FLOCV can be a good choice for 2D convective±diffusive problems on orthogonal and non-

orthogonal structured grids.
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